How Long Does It Take to Get a Doctor of Social Work Degree?
Many Doctor of Social Work (DSW) programs offer full-time, part-time, [...]
By now, you may have heard that we live in the age of Big Data. It’s been in all the papers. Also, many of us perform work driven—at least in part—by the avalanche of new information for which our era is named.
If Big Data isn’t the growth industry of the early 21st century, it’s certainly near the top of the list. Glassdoor named data scientist the second-best job in America for 2021 (Java developer eked out the first-place finish), citing its high levels of job satisfaction, excellent median base salary (over $110,000), and large number of open positions in the field.
Problem is, you can’t just wake up one morning and decide that you’re now a data scientist. Data science jobs require years of training and experience acquired through a mix of academic and professional learning. A staggering 90 percent of all data scientists hold a graduate degree; nearly half have a PhD. Not all are technically data science degrees; because this field combines mastery of so many disciplines, it’s possible to work in data science with a degree in statistics, mathematics, engineering, business administration… or data science. As the discipline expands, more professionals are seeking data-science specific degrees.
If you’re thinking about earning a master’s in data science, you’re probably wondering what you can expect from the program you attend. Programs differ based on faculty areas of expertise, demands of the local job market, and the division of the university offering the degree (Is it an engineering degree? A math degree? A business degree? You’ll find examples of each).
Certain elements, however, are fairly consistent across all programs. We’ve identified nine things master’s in data science programs have in common. We list them below, along with the answers to these questions:
Most experts agree that data science is an interdisciplinary subfield of computer science. Its hybrid nature makes it difficult to define, and as a result there is no single agreed-upon definition of the term. Some folks aren’t even sure whether it’s technically a science.
Data science involves the application of Big Data tools, software engineering, statistical methods, and mathematical theory to find patterns in massive data sets. These patterns often yield valuable insights about past performance and, perhaps more importantly, likely future events.
It’s a field that covers a lot of ground. As Dr. Ganapathi Pulipaka, Chief Data Scientist at Accenture, explains, data science is a field that blends “software engineering, predictive analytics, machine learning, deep learning, HPC, supercomputing, mathematics, data mining, databases (SQL, NoSQL), Hadoop, streaming analytics platforms for live analysis (Apache Kafka, Apache Flink, Apache Spark, Apache Impala), IoT platforms, edge computing, fog computing, networks, statistics, web development, cloud computing, data engineering, and data visualization.”
Data science can be applied pretty much anywhere there’s enough data to study. Businesses use it to disaggregate and analyze markets, predict economic trends, and optimize operations. Health sciences use data science to improve the accuracy of diagnoses, drive research for cures to diseases and conditions, and track public health trends to stop the spread of contagions. Netflix and Amazon use it to drive customer recommendations. Web developers use it to speculate what features will push their content to the top of Google’s search results.
Data science specialization areas include:
University and Program Name | Learn More |
Tufts University:
Master of Science in Data Science
|
|
Boston College:
Master of Science in Applied Economics
|
|
Boston College:
Master of Science in Applied Analytics
|
|
Merrimack College:
Master of Science in Data Science
|
|
Stevens Institute of Technology:
Master of Science in Data Science
|
You don’t need a graduate degree to work in some fields. Even some computer science jobs are open to those whose highest degree is a bachelor’s degree. However, in data science, the vast majority of professionals hold at least a master’s degree. According to BurtchWorks, 90 percent of all data scientists have completed graduate programs. 49 percent top out at the master’s; nearly as many (41 percent) hold a PhD.
A master’s program in data science explores the many disciplines that constitute the field and the ways they interact. Undergraduate degrees in data science are relatively rare, so few master’s-level students arrive with a deep academic background in the field. That doesn’t mean they are neophytes. On the contrary, most have studied mathematics, engineering, computer science, and statistics at the undergraduate level. Nearly all also have several years of post-undergraduate professional experience. Most master’s programs require it, in fact.
It’s worth noting that, because data science is a multidisciplinary field, you do not necessarily need to earn your master’s in data science to become a data scientist. A data-focused master’s in mathematics, statistics, computer science, business administration, or another related field will qualify you for many data science job opportunities.
The data science master’s admission process is competitive. Most admissions committees look for most or all of the following qualifications:
Core courses and electives vary from program to program, of course, but most programs cover a common set of basics. Consider the curriculum at the University of Virginia ‘s online Master of Science in Data Science program, which includes:
You don’t need a doctorate, but an awful lot of the data scientists with whom you’ll be competing for jobs have one. This is the rare field in which PhDs don’t necessarily funnel primarily into academic positions. Major tech employers, such as Google, pride themselves on the number of data science PhDs they hire.
Should you decide to pursue this degree, expect to commit at least four years to it. Not all of that will require a full-time commitment. You’ll begin the program completing coursework, then move onto a research and teaching phase. The bulk of your time will be committed to your research project, which you will ultimately defend before a panel of experts to earn your degree. Many programs also require PhDs to pass a comprehensive qualifying examination.
Data science is a relatively new field, and academia is still figuring out exactly what it is that someone academically trained as a data scientist should know. That said, particular traits recur in most of the top programs. We’ve listed them below.
Some schools require applicants to have several years of professional or research experience in data science, data analytics, data engineering, applied statistics, business analytics, or business intelligence. All top schools prefer experienced students. The goal is to create a learning environment in which students can learn as much from one another as they can from instructors.
Top data science master’s programs look for students proficient in at least one of the following:
In addition, they prefer students who know how to use frameworks like Apache, Hadoop, Hive, and Mahout; programming language interfaces like Jupyter Notebooks; and data visualization tools like D3.js and Tableau.
There are programs that will teach you all of these, but the most prestigious programs expect you to arrive knowing at least some of them, and able to demonstrate proficiency in several.
Most master’s in data science programs require 30 to 36 course credit hours, which translates to 10 to 12 courses. Although coursework varies from program to program, you can expect your master’s program to cover most if not all of the following:
Data science master’s programs typically culminate in a terminal project: either a research paper, a practicum that places students in real-world settings, or a capstone project. The University of Virginia online MSDS groups students in teams of two to four for a two-semester capstone project. Recent projects have included:
Data science has many different applications to many different fields. That’s why data science master’s programs typically offer areas of specialization, also called concentrations. Suppose you want to become a data scientist in healthcare. You’ll need specialized knowledge about the practices and business of medicine; you will likely specialize in healthcare data.
Most data science master’s programs offer concentrations in some or all of the following areas:
Depending on their previous coursework and professional experience, full-time students can complete some master’s of data science programs in as little as one year. In fact, the online program at University of Virginia can be completed in eleven months. Many students take two years to complete the degree, and part-time students, of course, take longer: three to four years, typically.
Data science blends inputs from numerous disciplines (applied mathematics, statistics, computer science, engineering, business administration, health sciences) but for now, most of the heavy hitter programs are housed in university engineering and computer science departments. Computers still do most of the heavy lifting in data science, after all, and the comp sci and engineering programs at most universities are their most computer-proficient.
According to LaborInsight, master’s-level data scientists do not earn substantially more than bachelor’s-level data scientists. The employment-data aggregator sets the average data scientist salary at $113,3000 for those with a bachelor’s degree, and $116,800 for those with a master’s.
This data is misleading, however, because of the evolution of data science. The recent trend has been toward requiring a master’s or even a doctorate to qualify for the best data science jobs. As a result, most bachelor’s-level data scientists in the data pool are mid- or late-career professionals. This is what accounts for their relatively high salary compared to the master’s pool, which is, on the whole, younger, with fewer years of professional experience. Going forward, expect the disparity between these two averages to increase significantly. And, expect fewer roles to be open to those who lack a graduate degree.
With over 40 percent of working data scientists holding a PhD, this is an exceptionally popular doctorate. Most schools with a reputable data science program and a graduate program (the Venn diagram of those two groups is pretty much a circle) also offer a PhD.
Top Master of Science in Data Science programs include:
Schools offering top online Master of Science in Data Science programs include:
You’ll find relatively inexpensive Master of Data Science programs at:
Affordable online Master of Data Science programs include:
Questions or feedback? Email editor@noodle.com
Many Doctor of Social Work (DSW) programs offer full-time, part-time, [...]
New developments in artificial intelligence are impacting fields from healthcare [...]
Generally, data science jobs require data scientists proficient in programming [...]
Physicians with aspirations to become healthcare leaders often choose an [...]
Looking to switch to a high-paying, high-demand field? The best [...]
Categorized as: Data Science, Information Technology & Engineering